AI-900: Azure AI Fundamentals Practice Tests

Full Exam Simulations included + explanations | Pass the AI-900: Azure AI Fundamentals Practice exam confidently!

People that will take the Microsoft Azure AI Fundamentals certification

This course is perfect for those who want to obtain the Azure IA fundamentals certificate

This course is perfect for anyone who wants to increase their IA Azure skills

This Practice Test which will help clear the Azure AI-900 Fundamentals Certification Exam with Good Score.

Microsoft Certified: Azure AI Fundamentals AI-900

This exam is an opportunity to demonstrate knowledge of common ML and AI workloads and how to implement them on Azure.

This exam is intended for candidates with both technical and non-technical backgrounds. Data science and software engineering experience is not required; however, some general programming knowledge or experience would be beneficial.

Azure AI Fundamentals can be used to prepare for other Azure role-based certifications like Azure Data Scientist Associate or Azure AI Engineer Associate, but it’s not a prerequisite for any of them.

Skills measured AI 900

  • Describe AI workloads and considerations
  • Describe fundamental principles of machine learning on Azure
  • Describe features of computer vision workloads on Azure
  • Describe features of Natural Language Processing (NLP) workloads on Azure
  • Describe features of conversational AI workloads on Azure

Microsoft market share in cloud services has increased exponentially in the last couple of years and many enterprises have started their journey on cloud. Hence, not only coveted, but Azure certifications are very well respected certifications in the job market too.

If you are a Data Scientist, data analyst or data engineer and want to foray into the domain of Machine Learning/Artificial Intelligence, then you should consider certifying with Microsoft Azure AI Fundamentals AI 900 to begin your journey!

Topics covered in these practice exam:

-Fundamental principles of machine learning not limited to Azure (30-35%)

-Artificial Intelligence workloads (15-20%)

-Computer vision workloads on Azure (15-20%)

-Natural Language Processing (NLP) workloads on Azure (15-20%)

-Conversational AI workloads on Azure (15-20%)

Overview of AI

AI is the creation of software that imitates human behaviors and capabilities. Key elements include:

  • Machine learning – This is often the foundation for an AI system, and is the way we “teach” a computer model to make predictions and draw conclusions from data.
  • Anomaly detection – The capability to automatically detect errors or unusual activity in a system.
  • Computer vision – The capability of software to interpret the world visually through cameras, video, and images.
  • Natural language processing – The capability for a computer to interpret written or spoken language, and respond in kind.
  • Conversational AI – The capability of a software “agent” to participate in a conversation.

Azure Machine Learning

Machine Learning is the basis of most AI solutions.

Microsoft Azure offers the following: Azure Machine Learning Service – A cloud-based platform that allows you to create, manage and publish machine learning models. Azure Machine Learning offers the following capabilities and features:

Automated machine-learning: This feature allows non-experts to create machine learning models quickly from data.

Azure Machine Learning designer: An interface that allows for no-code creation of machine learning solutions.

Data and compute management: Professional data scientists can access cloud-based data storage and compute resources to run code for data experiments at scale.

Pipelines: Software engineers, data scientists, and IT operations professionals are able to create pipelines that can be used to manage model deployment, training, and management.

Tutorial Bar
Logo