Deep Learning: Advanced NLP and RNNs

Deep Learning: Advanced NLP and RNNs

Natural Language Processing with Sequence-to-sequence (seq2seq), Attention, CNNs, RNNs, and Memory Networks!

What you’ll learn

  • Build a text classification system (can be used for spam detection, sentiment analysis, and similar problems)
  • Build a neural machine translation system (can also be used for chatbots and question answering)
  • Build a sequence-to-sequence (seq2seq) model
  • Build an attention model
  • Build a memory network (for question answering based on stories)

Requirements

  • Understand what deep learning is for and how it is used
  • Decent Python coding skills, especially tools for data science (Numpy, Matplotlib)
  • Preferable to have experience with RNNs, LSTMs, and GRUs
  • Preferable to have experience with Keras
  • Preferable to understand word embeddings

Who this course is for:

  • Students in machine learning, deep learning, artificial intelligence, and data science
  • Professionals in machine learning, deep learning, artificial intelligence, and data science
  • Anyone interested in state-of-the-art natural language processing
Tutorial Bar
Logo