Predictive Modeling with Python
Think with a predictive mindset and understand well the basics of the techniques used in prediction with this course
What you’ll learn
-
Learn the predictive modeling in python, linear regression, logistic regression, the fitting model with a sci-kit learn library, the fitting model with stat model library, ROC curves, backward elimination approach, stats model package, etc.
-
You will be guided through the installation of the required software. Data Pre-processing, which includes Data frame, splitting dataset, feature scaling, etc. You will gain an edge on Linear Regression, Salary Prediction, Logistic Regression. You will get to work on various datasets dealing with Credit Risk and Diabetes.
Requirements
-
To get started with Predictive Modelling with Python a solid foundation in statistics is much appreciated. It takes a good amount of understanding to interpret those numbers to understand whether the numbers are adding up or not.
-
Along with the above-mentioned knowledge, one must know to code in Python.
-
Knowing SQL also acts as a complementary skillset
-
Even if someone is not well equipped with the above-mentioned skill, it should not act as a hindrance as everything is possible with an honest effort and strong will.
Who this course is for:
- This Predictive Modeling with Python Course can be taken up by anyone who shares a decent amount of interest in this field. The earlier someone starts the further they can reach. In the case of students who are pursuing a course in statistics, or computer science graduates it is a very good opportunity to direct your career in that direction. As this is a much demand skill every IT professional is looking for a good switch and entering the domain of predictive analysis.
- Data Analyst, Data Scientist, Business Analyst, Market Research Analyst, Quality Engineer, Solution Architect, Programmer Analyst, Statistical Analyst, Statistician