FREE Python – Data Analytics – Real World Hands-on Projects

Use coupon code : DSL_PROMO5_MAR1 to get it free

Description

In this course, we have uploaded 8 Data Analytics Projects, solved with Python.

These projects can used if you are looking for a starting level job as a Data Analyst.

If you are a student, you can use these projects to submit in college/institute.

The source codes and datasets files are available to download.

All the projects are created with a very easy explanation.

We have mainly used the popular Python Pandas Library, along with Matplotlib to solve these projects.

Kindly subscribe ‘Data Science Lovers’ on YouTube and show your support.

To buy our Data Analyst Study Material , you can mail us at datasciencelovers@gmail.com

The projects are :

  • Project 1 – Weather Data Analysis
  • Project 2 – Cars Data Analysis
  • Project 3 – Police Data Analysis
  • Project 4 – Covid Data Analysis
  • Project 5 – London Housing Data Analysis
  • Project 6 – Census Data Analysis
  • Project 7 – Udemy Data Analysis
  • Project 8 – Netflix Data Analysis

Some basic examples of commands used in these projects are :

head() – It shows the first N rows in the data (by default, N=5).

shape – It shows the total no. of rows and no. of columns of the dataframe

index – This attribute provides the index of the dataframe

columns – It shows the name of each column

dtypes – It shows the data-type of each column

unique() – In a column, it shows all the unique values. It can be applied on a single column only, not on the whole dataframe.

nunique() – It shows the total no. of unique values in each column. It can be applied on a single column as well as on the whole dataframe.

count – It shows the total no. of non-null values in each column. It can be applied on a single column as well as on the whole dataframe.

value_counts – In a column, it shows all the unique values with their count. It can be applied on a single column only.

info() – Provides basic information about the dataframe.* size – To show No. of total values(elements) in the dataset.

duplicated( ) – To check row wise and detect the Duplicate rows.

isnull( ) – To show where Null value is present.

dropna( ) – It drops the rows that contains all missing values.

isin( ) – To show all records including particular elements.

str.contains( ) – To get all records that contains a given string.

str.split( ) – It splits a column’s string into different columns.

to_datetime( ) – Converts the data-type of Date-Time Column into datetime[ns] datatype.

dt.year.value_counts( ) – It counts the occurrence of all individual years in Time column.

groupby( ) – Groupby is used to split the data into groups based on some criteria.

sns.countplot(df[‘Col_name’]) – To show the count of all unique values of any column in the form of bar graph.

max( ), min( ) – It shows the maximum/minimum value of the series.

mean( ) – It shows the mean value of the series.

Who this course is for:

  • Beginners looking for job as a Data Analyst
  • Students searching for projects to submit in college/institute
  • Anyone interested in Data Science and Data Analytics

Tutorial Bar
Logo